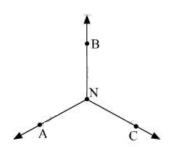

Angles and Pairs of Angles

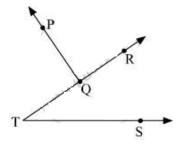
PRACTICE SET 15 [PAGE 25]

Practice Set 15 | Q 1 | Page 25

Observe the figure and complete the table for ∠AWB.


Points in the interior	
Points in the exterior	
Points on the arms of the angles	

Solution:


Solution.	
Points in the interior	R, C, N, X
Points in the exterior	T, U, Q, V, Y
Points on the arms of the angles	A, W, G, B

Practice Set 15 | Q 2 | Page 25

Name the pairs of adjacent angles in the figures below.

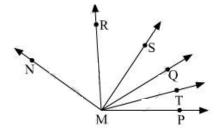
Solution: Two angles that have a common vertex, a common arm, and separate interiors are said to be adjacent angles.

The pairs of adjacent angles are given below:

∠ANB and ∠BNC,

∠BNC and ∠ANC,

∠ANC and ∠ANB,


∠PQR and ∠PQT.

Practice Set 15 | Q 3.1 | Page 25

Are the following pair adjacent angle? If not, state the reason.

∠PMQ and ∠RMQ

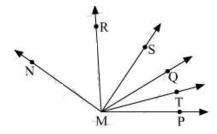
Solution: ∠PMQ and ∠RMQ

Two angles which have a common vertex, a common arm and separate interiors are said to be adjacent angles

In \angle PMQ and \angle RMQ, M is the common vertex and MQ is the common arm. Therefore, \angle PMQ and \angle RMQ are adjacent angles.

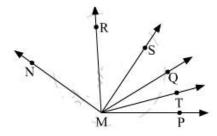
Practice Set 15 | Q 3.2 | Page 25

Are the following pair adjacent angle? If not, state the reason.


∠RMQ and ∠SMR

Solution: ∠RMQ and ∠SMR

Two angles which have a common vertex, a common arm, and separate interiors are said to be adjacent angles


The angles \angle RMQ and \angle SMR have a common vertex M, but don't have common arm. Therefore, \angle RMQ and \angle SMR are not adjacent angles.

Practice Set 15 | Q 3.3 | Page 25

Are the following pair adjacent angle? If not, state the reason.

∠RMS and ∠RMT

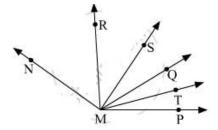
Solution: ∠RMQ and ∠SMR

Two angles which have a common vertex, a common arm, and separate interiors are said to be adjacent angles

The angles \angle RMS and \angle RMT have a common vertex M, but don't have common arm. Therefore, \angle RMS and \angle RMT are not adjacent angles.

Practice Set 15 | Q 3.4 | Page 25

Are the following pair adjacent angle? If not, state the reason.


∠SMT and ∠RMS

Solution: ∠RMQ and ∠SMR

Two angles which have a common vertex, a common arm, and separate interiors are said to be adjacent angles

In \angle SMT and \angle RMS, M is the common vertex and SM is the common arm. Therefore, \angle SMT and \angle RMS are adjacent angles.

PRACTICE SET 16 [PAGE 26]

Practice Set 16 | Q 1.1 | Page 26

The measures of the angle is given below. Write the measures of their complementary angle.

40°

Solution: Let the measure of the complementary angle be a.

40 + a = 90

 $\therefore a = 50^{\circ}$

Hence, the measure of the complement of an angle of measure 40° is 50°

Practice Set 16 | Q 1.2 | Page 26

The measures of the angle is given below. Write the measures of their complementary angle.

63°

Solution: Let the measure of the complementary angle be a.

63 + a = 90

 \therefore a = 27°

Hence, the measure of the complement of an angle of measure 63° is 27°

Practice Set 16 | Q 1.3 | Page 26

The measures of the angle is given below. Write the measures of their complementary angle.

45°

Solution: Let the measure of the complementary angle be a.

$$45 + a = 90$$

$$\therefore$$
 a = 45°

Hence, the measure of the complement of an angle of measure 45° is 45°.

Practice Set 16 | Q 1.4 | Page 26

The measures of the angle is given below. Write the measures of their complementary angle.

55°

Solution: Let the measure of the complementary angle be a.

$$55 + a = 90$$

$$\therefore$$
 a = 35°

Hence, the measure of the complement of an angle of measure 55° is 35°

Practice Set 16 | Q 1.5 | Page 26

The measures of the angle is given below. Write the measures of their complementary angle.

20°

Solution: Let the measure of the complementary angle be a.

$$20 + a = 90$$

$$\therefore$$
 a = 70°

Hence, the measure of the complement of an angle of measure 20° is 70°

Practice Set 16 | Q 1.6 | Page 26

The measures of the angle is given below. Write the measures of their complementary angle.

90°

Solution: Let the measure of the complementary angle be a.

$$90 + a = 90$$

$$\therefore a = 0^{\circ}$$

Hence, the measure of the complement of an angle of measure 90° is 0°.

Practice Set 16 | Q 1.7 | Page 26

The measures of the angle is given below. Write the measures of their complementary angle.

χ°

Solution: Let the measure of the complementary angle be a.

$$x + a = 90$$

$$\therefore a = (90 - x)^{\circ}$$

Hence, the measure of the complement of an angle of measure x° is $(90 - x)^{\circ}$

Practice Set 16 | Q 2 | Page 26

 $(y -- 20)^{\circ}$ and $(y + 30)^{\circ}$ are the measures of complementary angles. Find the measure of each angle.

Solution: Sum of two complementary angles is 90°

$$(y - 20)^{\circ} + (y + 30)^{\circ} = 90^{\circ}$$

$$\Rightarrow$$
 y - 20 + y + 30 = 90

$$\Rightarrow$$
 2y + 10 = 90

$$\Rightarrow$$
 2y = 80

$$\Rightarrow$$
 y = 40

Hence, the measure of the two angles are 20° and 70°.

PRACTICE SET 17 [PAGE 27]

Practice Set 17 | Q 1.1 | Page 27

Write the measure of the supplement of the angle given below.

15°

Solution: Let the measure of the supplementary angle be a.

$$15 + a = 180$$

Hence, the measure of the supplement of an angle of measure 15° is 165°.

Practice Set 17 | Q 1.2 | Page 27

Write the measure of the supplement of the angle given below.

85°

Solution: Let the measure of the supplementary angle be a.

$$85 + a = 180$$

$$\therefore a = 95^{\circ}$$

Hence, the measure of the supplement of an angle of measure 85° is 95°.

Practice Set 17 | Q 1.3 | Page 27

Write the measure of the supplement of the angle given below.

120°

Solution: Let the measure of the supplementary angle be a.

$$120 + a = 180$$

$$\therefore$$
 a = 60°

Hence, the measure of the supplement of an angle of measure 120° is 60°.

Practice Set 17 | Q 1.4 | Page 27

Write the measure of the supplement of the angle given below.

37°

Solution: Let the measure of the supplementary angle be a.

$$37 + a = 180$$

$$∴ a = 143^{\circ}$$

Hence, the measure of the supplement of an angle of measure 37° is 143°.

Practice Set 17 | Q 1.5 | Page 27

Write the measure of the supplement of the angle given below.

108°

Solution: Let the measure of the supplementary angle be a.

$$108 + a = 180$$

Hence, the measure of the supplement of an angle of measure 108° is 72°.

Practice Set 17 | Q 1.6 | Page 27

Write the measure of the supplement of the angle given below.

0°

Solution: Let the measure of the supplementary angle be a.

$$0 + a = 180$$

$$\therefore a = 180^{\circ}$$

Hence, the measure of the supplement of an angle of measure 0° is 180°.

Practice Set 17 | Q 1.7 | Page 27

Write the measure of the supplement of the angle given below.

a°

Solution: Let the measure of the supplementary angle be x.

$$a + x = 180$$

$$x = (180 - a)^{\circ}$$

Hence, the measure of the supplement of an angle of measure a° is (180 – a)°.

Practice Set 17 | Q 2 | Page 27

The measures of some angles are given below. Use them to make pairs of complementary and supplementary angles.

$$m\angle B = 60^{\circ} \ m\angle N = 30^{\circ} \ m\angle Y = 90^{\circ} \ m\angle J = 150^{\circ}$$

 $m\angle D = 75^{\circ} \ m\angle E = 0^{\circ} \ m\angle F = 15^{\circ} \ m\angle G = 120^{\circ}$

Solution: If the sum of the measures of two angles is 90° they are known as complementary angles.

Hence, the pairs of complementary angles are $\angle B$ and $\angle N$, $\angle D$ and $\angle F$, $\angle Y$, and $\angle E$.

If the sum of the measures of two angles is 180° they are known as supplementary angles.

Hence, the pairs of supplementary angles are $\angle B$ and $\angle G$, $\angle N$, and $\angle J$.

Practice Set 17 | Q 3 | Page 27

In $\triangle XYZ$, $m \angle Y = 90^{\circ}$. What kind of a pair do $\angle X$ and $\angle Z$ make?

Solution: In ∆XYZ,

 $\angle X + \angle Y + \angle Z = 180^{\circ}$ (Angle Sum property of triangle

$$\Rightarrow \angle X + 90^{\circ} + \angle Z = 180^{\circ}$$

$$\Rightarrow \angle X + \angle Z = 90^{\circ}$$

Since, the sum of the measure of the two angles is 90°.

Hence, $\angle X$ and $\angle Z$ are complementary angles.

Practice Set 17 | Q 4 | Page 27

The difference between the measures of the two angles of a complementary pair is 40°.

Find the measures of the two angles.

Solution: Let the measure of the first angle a.

Then, the measure of the other angle a + 40°

Now, a + a + 40 = 90

$$\Rightarrow$$
 2a = 50

$$\Rightarrow$$
 a = 25°

Hence, the measure of the two angles are 25° and 65°.

Practice Set 17 | Q 5 | Page 27

□ PTNM is a rectangle. Write the names of the pairs of supplementary angles.

Solution: If the sum of the measures of two angles is 180° they are known as supplementary angles.

The measure of all the angles of a rectangle is 90°.

Hence, the pairs of supplementary angles are $\angle P$ and $\angle M$, $\angle T$ and $\angle N$, $\angle P$ and $\angle T$, $\angle M$ and $\angle N$, $\angle P$ and $\angle N$, $\angle M$ and $\angle T$.

Practice Set 17 | Q 6 | Page 27

If $m\angle A = 70^\circ$, what is the measure of the supplement of the complement of $\angle A$?

Solution: Let the measure of the complementary angle be a.

$$70 + a = 90$$

Let the measure of the supplementary angle of 20° be x.

$$20 + x = 180$$

$$\therefore x = 160^{\circ}$$

Hence, the measure of the supplement of the complement of $\angle A$ is 160°.

Practice Set 17 | Q 7 | Page 27

If $\angle A$ and $\angle B$ are supplementary angles and $m\angle B = (x + 20)^\circ$, then what would be $m\angle A$?

Solution: Let the measure of the supplementary angle of $\angle B$ be a.

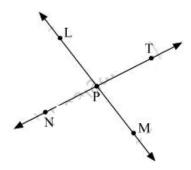
$$(x + 20)^{\circ} + a = 180$$

∴
$$a = (160 - x)^{\circ}$$

Hence, the measure of $\angle A$ is $(160 - x)^{\circ}$.

PRACTICE SET 18 [PAGE 28]

Practice Set 18 | Q 1 | Page 28


Name the pairs of opposite rays in the figure alongside.

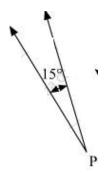
Solution: Two rays that have a common origin and form a straight line are said to be opposite rays.

Hence, the pairs of opposite rays are ray PL & ray PM and ray PN & ray PT.

Practice Set 18 | Q 2 | Page 28

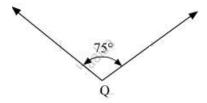
Are the ray PM and PT opposite rays? Give reasons for your answer.

Solution: Ray PM and PT are not opposite rays because they do not form a straight line.


PRACTICE SET 19 [PAGE 29]

Practice Set 19 | Q 1.1 | Page 29

Draw the pairs of angles as described below. If that is not possible, say why.


Complementary angles that are not adjacent.

Solution:

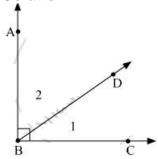
Practice Set 19 | Q 1.2 | Page 29

Draw the pairs of angles as described below. If that is not possible, say why.

Angles in a linear pair are not supplementary.

Solution: If the sum of the measures of two angles is 180° they are known as supplementary angles.

The sum of the measures of the angles in a linear pair is 180°.

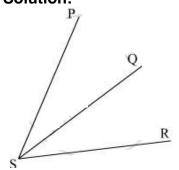

Therefore, angles in a linear pair are always supplementary.

Practice Set 19 | Q 1.3 | Page 29

Draw the pairs of angles as described below. If that is not possible, say why.

Complementary angles that do not form a linear pair.

Solution:

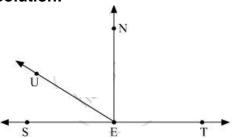


Practice Set 19 | Q 1.4 | Page 29

Draw the pairs of angles as described below. If that is not possible, say why.

Adjacent angles which are not in a linear pair.

Solution:



Practice Set 19 | Q 1.5 | Page 29

Draw the pairs of angles as described below. If that is not possible, say why.

Angles which are neither complementary nor adjacent.

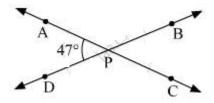
Solution:

Practice Set 19 | Q 1.6 | Page 29

Draw the pairs of angles as described below. If that is not possible, say why.

Angles in a linear pair which are complementary.

Solution: If the sum of the measures of two angles is 180° they are known as supplementary angles.


The sum of the measures of the angles in a linear pair is 180°.

Therefore, angles in a linear pair are always supplementary.

PRACTICE SET 20 [PAGE 30]

Practice Set 20 | Q 1 | Page 30

Lines AC and BD intersect at point P. $m\angle APD = 47^{\circ}$. Find the measures of $\angle APB$, $\angle BPC$, $\angle CPD$.

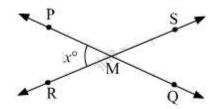
Solution: In the given figure,

$$\angle DPA + \angle APB = 180^{\circ}$$
 (Linear Pair angles)

$$\Rightarrow$$
 47° + \angle APB = 180°

Now,

 $\angle APD = \angle BPC = 47^{\circ}$ (Vertically opposite angles)



 $\angle APB = \angle DPC = 133^{\circ}$ (Vertically opposite angles)

Hence, the measures of ∠APB, ∠BPC, ∠CPD are 133°, 47° and 133° respectively.

Practice Set 20 | Q 2 | Page 30

Lines PQ and RS intersect at point M. $m \angle PMR = x^{\circ}$ What are the measures of $\angle PMS$, $\angle SMQ$ and $\angle QMR$?

Solution: In the given figure,

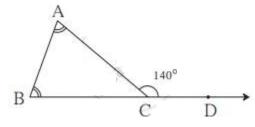
 \angle RMP + \angle PMS = 180° (Linear Pair angles)

$$\Rightarrow$$
 x° + \angle PMS = 180°

$$\Rightarrow \angle PMS = (180 - x)^{\circ}$$

Now,

 $\angle PMR = \angle SMQ = x^{\circ}$ (Vertically opposite angles)


 $\angle PMS = \angle RMQ = (180 - x)^{\circ}$ (Vertically opposite angles)

Hence, the measures of \angle PMS, \angle SMQ and \angle QMR are (180 - x)°, x° and (180 - x)° respectively.

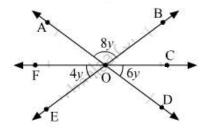
PRACTICE SET 21 [PAGE 33]

Practice Set 21 | Q 1 | Page 33

 \angle ACD is an exterior angle of \triangle ABC. The measures of \angle A and \angle B are equal. If m \angle ACD = 140°, find the measures of the angles \angle A and \angle B.

Solution: $\angle A + \angle B = \angle ACD$ (Exterior angle property)

$$\Rightarrow 2\angle A = 140^{\circ} \ (\because \angle A = \angle B)$$


Hence, the measures of $\angle A$ and $\angle B$ are 70° and 70° respectively.

Practice Set 21 | Q 2 | Page 33

Using the measures of the angles given in the figure alongside, find the measures of the remaining three angles.

Solution: In the given figure,

 $\angle BOC = \angle FOE = 4y$ (Vertically opposite angles)

∠EOD = ∠AOB = 8y (Vertically opposite angles)

 $\angle AOF = \angle COD = 6y$ (Vertically opposite angles)

Now, ∠AOB + ∠BOC + ∠COD = 180° (Linear Pair angles)

 \Rightarrow 8y + 4y + 6y = 180°

⇒ 18y =180°

 \Rightarrow y =10°

Therefore,

 $\angle BOC = 4y$

= 40°

∠EOD = 8y

= 80°

∠AOF = 6y

= 60°

Hence, the measures of ∠BOC, ∠EOD, ∠AOF are 40°, 80° and 80° respectively.

Practice Set 21 | Q 3 | Page 33

In the isosceles triangle ABC, \angle A, and \angle B are equal. \angle ACD is an exterior angle of \triangle ABC. The measures of \angle ACB and \angle ACD are (3x-17)° and (8x + 10)° respectively. Find the measures of \angle ACB and \angle ACD. Also find the measures of \angle A and \angle B.

Solution: Given:

 $\angle ACB = (3x - 17)^{\circ}$

$$\angle ACD = (8x + 10)^{\circ}$$

Now, $\angle ACB + \angle ACD = 180^{\circ}$ (Linear Pair angles)

$$\Rightarrow$$
 3x - 17+ 8x + 10 = 180

$$\Rightarrow$$
 11x =187

$$\Rightarrow$$
 x = 17

Therefore,

$$\angle ACB = (3x - 17)^{\circ}$$

$$= (51 - 17)^{\circ}$$

$$\angle ACD = (8x + 10)^{\circ}$$

$$= (136 + 10)^{\circ}$$

$$= 146^{\circ}$$

Now, $\angle A + \angle B = \angle ACD$ (Exterior angle property)

$$\Rightarrow$$
 2 \angle A = 146° (:: \angle A = \angle B)

Hence, the measures of \angle ACB, \angle ACD, \angle A and \angle B are 146°, 34°, 73° and 73° respectively.

